Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739210

RESUMO

In contact sports such as rugby, players are at risk of sustaining traumatic brain injuries (TBI) due to high-intensity head impacts that generate high linear and rotational accelerations of the head. Previous studies have established a clear link between high-intensity head impacts and brain strains that result in concussions. This study presents a novel approach to investigating the effect of a range of laboratory controlled drop test parameters on regional peak and mean maximum principal strain (MPS) predictions within the brain using a trained convolutional neural network (CNN). The CNN is publicly available at https://github.com/Jilab-biomechanics/CNN-brain-strains . The results of this study corroborate previous findings that impacts to the side of the head result in significantly higher regional MPS than forehead impacts. Forehead impacts tend to result in the lowest region-averaged MPS values for impacts where the surface angle was at 0° and 45°, while side impacts tend to result in higher regional peak and mean MPS. The absence of a neck in drop tests resulted in lower regional peak and mean MPS values. The results indicated that the relationship between drop test parameters and resulting regional peak and mean MPS predictions is complex. The study's findings offer valuable insights into how deep learning models can be used to provide more detailed insights into how drop test conditions impact regional MPS. The novel approach used in this paper to predict brain strains can be applied in the development of better methods to reduce the brain strain resulting from head accelerations such as protective sports headgear.

2.
Ann Biomed Eng ; 50(11): 1633-1647, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002780

RESUMO

World Rugby employs a specific drop test method to evaluate headgear performance, but almost all researchers use a different variation of this method. The aim of this study was, therefore, to quantify the differences between variations of the drop testing method using a Hybrid III headform and neck in the following impact setups: (1) headform only, with a flat steel impact surface, approximating the World Rugby method, (2 and 3) headform with and without a neck, respectively, onto a flat MEP pad impact surface, and (4) headform and neck, dropped onto an angled MEP pad impact surface. Each variation was subject to drop heights of 75-600 mm across three orientations (forehead, side, and rear boss). Comparisons were limited to the linear and rotational acceleration and rotational velocity for simplicity. Substantial differences in kinematic profile shape manifested between all drop test variations. Peak accelerations varied highly between variations, but the peak rotational velocities did not. Drop test variation also significantly changed the ratios of the peak kinematics to each other. This information can be compared to kinematic data from field head impacts and could inform more realistic impact testing methods for assessing headgear.


Assuntos
Traumatismos Craniocerebrais , Dispositivos de Proteção da Cabeça , Humanos , Fenômenos Biomecânicos , Rugby , Cabeça , Pescoço , Aceleração
3.
Ann Biomed Eng ; 50(11): 1546-1564, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35059915

RESUMO

Rugby union is a popular sport played across the world. The physical contact inherent in the game means that players are at increased risk of concussive injury. In 2019, World Rugby created a new category of permitted headgear under Law 4 as a medical device. This established a pathway for headgear designed to reduce peak accelerations to be worn in matches. Investigations of the potential of soft-shelled protective headgear to reduce head impact accelerations have been mostly limited to the analysis of linear kinematics. However rotational head impact accelerations have long been implicated as far more injurious. The aim of this study, therefore, was to assess the linear and rotational acceleration reduction brought about by soft-shelled rugby headgear. A Hybrid III headform and neck were dropped onto a modular elastomer programmer impact surface, impacting at four different velocities (1.7-3.4 m/s) in five different impact orientations. Impact surface angles were 0°, 30°, and 45°. Peak linear and rotational accelerations, PLA and PRA respectively, were recorded. All headgear significantly reduced PLAs and PRAs when compared to a no headgear scenario. The new generation, headgear reduced all measures significantly more than the older generation of headgear. Impact locations offset from the center of mass of the headform resulted in the highest PRAs measured. As the impact surface angle increased, both PLAs and PRAs decreased. The study demonstrated that headgear tested lowered PLAs by up to 50%, and PRAs by up to 60% compared to the bare headform. Our data suggest that new generation headgear could make a difference on the field in reducing injurious impact accelerations in a collision.


Assuntos
Rugby , Esportes , Dispositivos de Proteção da Cabeça , Aceleração , Fenômenos Biomecânicos
4.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577235

RESUMO

Concussion is an inherent risk of participating in contact, combat, or collision sports, within which head impacts are numerous. Kinematic parameters such as peak linear and rotational acceleration represent primary measures of concussive head impacts. The ability to accurately measure and categorise such impact parameters in real time is important in health and sports performance contexts. The purpose of this study was to assess the accuracy of the latest HitIQ Nexus A9 instrumented mouthguard (HitIQ Pty. Ltd. Melbourne Australia) against reference sensors in an aluminium headform. The headform underwent drop testing at various impact intensities across the NOCSAE-defined impact locations, comparing the peak linear and rotational acceleration (PLA and PRA) as well as the shapes of the acceleration time-series traces for each impact. Mouthguard PLA and PRA measurements strongly correlated with (R2 = 0.996 and 0.994 respectively), and strongly agreed with (LCCC = 0.997) the reference sensors. The root mean square error between the measurement devices was 1 ± 0.6g for linear acceleration and 47.4 ± 35 rad/s2 for rotational acceleration. A Bland-Altman analysis found a systematic bias of 1% for PRA, with no significant bias for PLA. The instrumented mouthguard displayed high accuracy when measuring head impact kinematics in a laboratory setting.


Assuntos
Concussão Encefálica , Futebol Americano , Protetores Bucais , Aceleração , Fenômenos Biomecânicos , Dispositivos de Proteção da Cabeça , Humanos , Laboratórios
5.
J Healthc Eng ; 2021: 5567625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981403

RESUMO

The purpose of this study was to examine the potential of soft-shelled rugby headgear to reduce linear impact accelerations. A hybrid III head form instrumented with a 3-axis accelerometer was used to assess headgear performance on a drop test rig. Six headgear units were examined in this study: Canterbury Clothing Company (CCC) Ventilator, Kukri, 2nd Skull, N-Pro, and two Gamebreaker headgear units of different sizes (headgears 1-6, respectively). Drop heights were 238, 300, 610, and 912 mm with 5 orientations at each height (forehead, front boss, rear, rear boss, and side). Impact severity was quantified using peak linear acceleration (PLA) and head injury criterion (HIC). All headgear was tested in comparison to a no headgear condition (for all heights). Compared to the no headgear condition, all headgear significantly reduced PLA and HIC at 238 mm (16.2-45.3% PLA and 29.2-62.7% HIC reduction; P < 0.0005, η p 2 = 0.987-0.991). Headgear impact attenuation lowered significantly as the drop height increased (32.4-5.6% PLA and 50.9-11.7% HIC reduction at 912 mm). There were no significant differences in PLA or HIC reduction between headgear units 1-3. Post hoc testing indicated that headgear units 4-6 significantly outperformed headgear units 1-3 and additionally headgear units 5 and 6 significantly outperformed headgear 4 (P < 0.05). The lowest reduction PLA and HIC was for impacts rear orientation for headgear units 1-4 (3.3 ± 3.6%-11 ± 5.8%). In contrast, headgear units 5 and 6 significantly outperformed all other headgear in this orientation (P < 0.0005, η p 2 = 0.982-0.990). Side impacts showed the greatest reduction in PLA and HIC for all headgear. All headgear units tested demonstrated some degree of reduction in PLA and HIC from a linear impact; however, units 4-6 performed significantly better than headgear units 1-3.


Assuntos
Traumatismos Craniocerebrais , Rugby , Aceleração , Traumatismos Craniocerebrais/prevenção & controle , Cabeça , Dispositivos de Proteção da Cabeça , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...